Prediction of Mechanical Properties of Polymers. Tensile Strength of Glass-Reinforced Plastics

ELISE McABEE and DAVID W. LEVI, Feltman Research Laboratories, Picatinny Arsenal, Dover, N. J.

Synopsis

Tensile strength data at high and low rates of loading were obtained for a glass-reinforced polyester and a glass-reinforced epoxy. Analysis of the data by a rate method indicated that such a method may be used to predict behavior of polymers from limited test data.

INTRODUCTION

Glass-reinforced polymers are used in a wide variety of engineering applications. Often a knowledge of long-term mechanical behavior is of prime importance in the design of items. In this work the effects of rates of loading and of temperature on mechanical properties of two of these materials have been studied, and an effort is made to show how limited test data may be used for prediction of failure times or mechanical strength for such reinforced polymers.

EXPERIMENTAL

Materials

The glass-reinforced polyester was furnished by Raytheon Corp. and consisted of 1/8-in. (nominal) thick panels formed by hand lay-up. The following information was furnished by Raytheon Corp. relative to the fabrication: vacuum pressure no greater than 12 psi; temperature-gelled under heat lamps and postcured 3 hr at 250°F; reinforcement, 181 cloth with Garan finish; resin, Stypol 25. The glass-reinforced epoxide was prepared by hand lay-up (nominal 1/8-in. thick panels). 181 Glass cloth was used with Epon 828 (Shell Chemical Co.) epoxide.

Testing

Tensile specimens were machined to conform to the ASTM Test Method D-638, type I specimen.¹ Groups of specimens were prepared consisting of two specimens from each of three panels.

Static tests were conducted in a Model TTB Instron Testing Machine. Tests were carried out using constant rates of crosshead separation of 0.02, 0.2, 0.4, 0.6, and 2.0 in. per minute.

E. McABEE AND D. LEVI

The high-rate equipment and procedures have been described elsewhere.² Load was applied so that failure would occur at approximately 10, 80, and 600 millisec. Table I gives the data.

$t_{\rm f}$, sec		S/T, psi/°K	
Polyester	Epoxy	Polyester	Epoxy
	Temperature	213°K	
308	207	204	260
264	193	193	200
123	176	225	251
98	151	201	261
78ª	81	201	201
0 110	81	301	229
0.108	81	304	210
0.108	75	244	200
0.104	14 8	901	200
0.104	14.0	021 979	211
0.090	14.0	010 988	291
0.090	10.7	200	200
0.094	10.0	047 204	281
0.000	0.100	024 070	412
0.000	0.108	270	480
0.080	0.164	268	432
0.014	0.160	398	381
0.014	0.158	386	413
0.0136	0.148	381	402
0.0134	0.115	370	378
0.0128	0.016	387	459
0.0107*	0.015	345	437
	0.015		422
	0.015		422
	Temperature	233°K	
68ª	219	192	272
0.109	218	265	267
0.102	199	262	233
0.102	186	250	223
0.101	83	262	256
0.092	80	187	246
0.089	74	222	231
0.088	74	234	228
0.085	13.8	223	252
0.0107*	13.8	311	234
	13.2		239
	12.9		233
	0.200		373
	0.197		369
	0.175		368
	0.166		348
	0.164		387
	0.160		367
	0.155		341
	0.138		327
	0.017		388

TABLE I Stress Rupture Data for Glass-Filled Polyester and Epoxy

$t_{\rm f}$, sec		S/T, psi/°K	
Polyester	Epoxy	Polyester	Epoxy
	0.016		412
	0.0143		425
	0.012		309
	Temperature	253°K	
209	261	167	199
201	216	165	175
109	208	185	205
108	169	154	148
65ª	83	165	224
0.120	80	222	228
0.116	78	214	196
0.112	65	213	181
0.100	18	247	208
0.091	15	230	201
0.0107*	13	272	208
0.0101	13		197
	0.176		319
	0.160		302
	0.158		327
	0.158		312
	0.142		329
	0.140		321
	0.138		325
	0.1076		395
	0.015		305
	0.015		376
	Temperatu	ıre 273°K	
273	240	149	205
244	229	144	179
117	217	144	159
115	209	148	141
62ª	82	143	188
0.112	82	212	178
0.110	79	210	156
0.109	76	195	177
0.092	15	195	188
0.088	14	196	177
0.080	13	193	151
0.0101*	11	244	154
	0.152		292
	0.146		283
	0.126		270
	0.112		293
	0.110		303
	0.104		283
	0.082		219
	0.080		224
	0.016		341
	0.0144		315
	0 0125		206

TABLE I (continued)

(continued)

E. McABEE AND D. LEVI

$t_{\rm f}$, s	sec	S/T, psi/°K	
Polyester	Epoxy	Polyester	Epoxy
	Temperatu	re 296°K	
740ª	293	119	158
600ª	252	125	166
59ª	239	120	156
58ª	231	128	155
34*	78	140	179
33ª	72	136	183
22ª	70	142	168
20ª	68	137	157
-0 6 7ª	15	146	156
6. r	19	140	164
0.61a	19	140	104
0.01-	12	155	170
0.00	11	197	150
0.082°	0.132	182	259
0.082*	0.115	175	252
0.01*	0.105	219	236
0.0097	0.100	203	252
	0.096		252
	0.088		246
	0.014		269
	0.014		262
	0.0135		261
	0.0132		260
	Temperature	323°K	
383	243	87	133
367	241	109	143
299	219	81	121
108	214	105	111
106	86	97	153
58ª	77	106	135
0.091	71	133	127
0.084	64	150	148
0.082	14	140	134
0.076	13	136	148
0.071	13	140	117
0.071	12	199	126
0.070	0 116	180	220
0.0098*	0.110	160	202
	0.113		210
	0.092		204
	0.091		230
	0.088		202
	0.084		202
	0.084		200
	0.078		207
	0.0137		225
	0.0132		214
	0.013		220
	0.019		220

TABLE I (continued)

$t_{\rm f},{ m sec}$		S/T, psi/°K	
Polyester	Ероху	Polyester	Epoxy
	Temperature	353°K	
361	202	75	141
301	197	76	124
86	189	69	125
84	178	77	116
58ª	71	83	135
0.079	68	111	134
0.077	63	106	114
0.077	58	121	105
0.071	14	104	125
0.071	14	116	136
0.070	13	112	125
0.009*	13	154	130
	0.092		178
	0.089		168
	0.086		178
	0.086		181
	0.085		200
	0.083		180
	0.080		182
	0.075		167
	0.013		197
	0.012		201
	0.0084		82

TABLE I (continued)

^a Indicates average of five values.

RESULTS AND DISCUSSION

Several investigators³⁻⁶ have found that the lifetime (or time to failure), t_t , of a material under mechanical restraint may follow a process proceeding according to a rate equation. The relation may be written^{3,4} in the form

$$\log t_{\rm f} = \log C - \log T + (\Delta F^{\neq}/2.3RT) + bS/T, \tag{1}$$

where ΔF^{\neq} is the apparent free energy of activation for failure, S is the stress, and C and b are constants.

Isothermal data can be plotted according to

$$\log t_{\rm f} = D + bS/T. \tag{2}$$

Plots of log t_i versus S/T are shown for the glass-reinforced polyester in Figure 1 and for the glass-reinforced epoxy in Figure 2. The slope, b, was estimated by drawing the best parallel straight lines through each set of data (static or high rate) at the various temperatures. Although the scatter was quite troublesome, such parallel straight lines did appear to fit the data reasonably well. The scatter made it difficult to estimate D by extrapolation to S/T = 0. However, since the b values were known, log

 $t_t - bS/T + \log T$ was plotted against 1/T, as shown in Figures 3 and 4. The slope and intercept of the resulting straight lines yielded ΔF^{\neq} and C, respectively. Each experimental point in Figures 3 and 4 represents the average of the 10 to 12 determinations at that temperature. The equations for the lines in Figures 3 and 4 are:

Polyester

Static (b = -0.10)

$$\log t_i - bS/T + \log T = -8.3 + 7400 \left(\frac{1}{T}\right)$$

high Rate (b = -0.036)

$$\log t_f - bS/T + \log T = -5.6 + 3900 \left(\frac{1}{T}\right)$$

Epoxy

static (b = -0.046)

$$\log t_{\rm f} - bS/T + \log T = -0.55 + 3600 \left(\frac{1}{T}\right)$$

high Rate (b = -0.046)

$$\log t_{\rm f} - bS/T + \log T = -7.1 + 5900 \left(\frac{1}{T}\right)$$

The results suggest that this method of treating mechanical data for glass-reinforced polymers may be useful in predicting failure times or mechanical strength at various temperatures from limited experimental data.

References

1. ASTM Book of Standards, part 9, Philadelphia, 1961, p. 448.

2. E. McAbee and M. Chmura, J. Appl. Polym. Sci., 8, 3 (1964).

3. B. D. Coleman and A. G. Knox, Text. Res. J., 27, 393 (1957).

4. W. E. Wolstenholme and C. F. Stark, Report No. 1, Contract DA-18-035-AMC-139(A), Oct. 1964.

5. E. McAbee and D. W. Levi, J. Appl. Polym. Sci., 11, 2443 (1967).

6. E. McAbee and D. W. Levi, J. Appl. Polym. Sci., 11, 2067 (1967).

Received March 18, 1969

1908